Article 8314

Title of the article

                       NUMERICAL SOLUTION OF THE ELECTROMAGNETIC WAVE DIFRACTION PROBLEM                               ON THE SYTEM OF BODIES AND SCREENS 

Authors

Maksimova Marina Aleksandrovna, Postgraduate student, Penza State University (40 Krasnaya street, Penza, Russia), mmm@pnzgu.ru
Medvedik Mikhail Yur'evich, Candidate of physical and mathematical sciences, associate professor, sub-department of mathematics and supercomputer modeling, Penza State University (40 Krasnaya street, Penza, Russia), _medv@mail.ru
Smirnov Yuriy Gennad'evich, Doctor of physical and mathematical sciences, professor, head of sub-department of mathematics and supercomputer modeling, Penza State University (40 Krasnaya street, Penza, Russia), mmm@pnzgu.ru
Tsupak Aleksey Aleksandrovich, Candidate of physical and mathematical sciences, associate professor, sub-department of mathematics and supercomputer modeling, Penza State University (40 Krasnaya street, Penza, Russia), mmm@pnzgu.ru

Index UDK

517.3

Abstract

Background. The aim of this work is numerical solving of the vector problem of electromagnetic wave scattering on obstacles of complex shape, consisting of inhomogeneous bodies and infinitely thin absolutely conducting screens.
Material and methods. Using the methods of the potential theory, the original boundary value problem for Maxwell's equations is reduced to a system of integrodifferential equations in the regions and the surfaces of the scatterer. To obtain an approximate solution to the system the authors suggest the Galerkin method with piecewise linear finite basis functions.
Results. The quasiclassical statement of the diffraction problem by a system of obstacles of various dimensions is proposed; the boundary value problem is reducedto a system of integro-differential equations; the projection method for solving this system is formulated, the piecewise linear basis functions with compact support are introduced; formulas of matrix elements are obtained according to the Galerkin method; numerical results for the diffraction problem on inhomogeneous bodies and piecewise flat screens are obtained.
Conclusions. The proposed method allows to find numerical solutions to the vector problem of electromagnetic diffraction by obstacles of various dimensions. This method can be extended to the case of anisotropic volume scatterers and nonplanar screens.

Key words

vector diffraction problem, integro-differential equations, Galerkin method, finite basis functions.

Download PDF
References

1. Kolton D., Kress R. Metody integral'nykh uravneniy v teorii rasseyaniya [Methods of integral equations in the scattering theory]. Moscow: Mir, 1987, 312 p.
2. Durand M. Math. Meth. Appl. 1983, sci. 5, pp. 389–421.
3. Costabel M., Stephan E. J. Math. Anal. Appl. 1985, vol. 106.0, pp. 367–413.
4. Turc C., Anand A., Bruno O., Chaubell J. Proceedings of the Waves Conference (July 25–29, 2011). Available at: https://filer.case.edu/cct21/abstract_waves11_abct.pdf
5. Stephan E. P. Integral equations and potential theory. 1987, vol. 10, pp. 236–257.
6. Kirsch A., Lechleiter A. Appl. Anal. 2010, vol. 88, pp. 807–830.
7. Hänninen I., Taskinen M. and Sarvas J. Prog. Electromagn. Res. PIER. 2006, vol. 63, pp. 243–278.
8. Il'inskiy A. S., Kravtsov V. V., Sveshnikov A. G. Matematicheskie modeli elektrodinamiki [Mathematical models of electrodynamics]. Moscow: Vysshaya shkola, 1991, 224 p.
9. Samokhin A. B. Integral'nye uravneniya i iteratsionnye metody v elektromagnitnom rasseyanii [Integral equations and iteration methods in electromagnetic scattering]. Moscow: Radio i svyaz', 1998, 160 p.
10. Dmitriev V. I., Zakharov E. V. Metod integral'nykh uravneniy v vychislitel'noy elektrodinamike [Method of integral equations in computer electrodynamics]. Moscow: Maks-Press, 2008, 316 p.
11. Il'inskiy A. S., Smirnov Yu. G. Difraktsiya elektromagnitnykh voln na provodyashchikh tonkikh ekranakh [Electromagnetic waves diffraction on conductive thin screens]. Moscow: Radiotekhnika, 1996, 177 p.
12. Smirnov Yu. G., Tsupak A. A. Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki [Journal of calculus mathematics and mathematical physics]. 2004, vol. 44, no. 12, pp. 2264–2274.
13. Smirnov Yu. G., Tsupak A. A. Differentsial'nye uravneniya [Differential equations]. 2005, vol. 41, no. 9, pp. 1190–1197.
14. Smirnov Yu. G. Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki [Journal of calculus mathematics and mathematical physics]. 2007, vol. 47, no. 1, pp. 133–143.
15. Medvedik M. Yu., Smirnov Yu. G. Radiotekhnika i elektronika [Radio engineering and electronics]. 2008, no. 4, pp. 441–446.
16. Medvedik M. Yu., Smirnov Yu. G. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fiziko-matematicheskie nauki [University proceedings. Volga region. Physical and mathematical sciences]. 2009, no. 4 (12), pp. 54–69.
17. Medvedik M. Yu., Smirnov Yu. G., Tsupak A. A. Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki [Journal of calculus mathematics and mathematical physics]. 2014, vol. 54, no. 8, pp. 1319–1331.

 

Дата создания: 20.11.2014 14:40
Дата обновления: 25.11.2014 13:48